Skip to contents

A LearnerClust for agglomerative hierarchical clustering implemented in cluster::agnes(). The predict method uses stats::cutree() which cuts the tree resulting from hierarchical clustering into specified number of groups (see parameter k). The default number for k is 2.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.agnes")
lrn("clust.agnes")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, cluster

Parameters

IdTypeDefaultLevelsRange
metriccharactereuclideaneuclidean, manhattan-
standlogicalFALSETRUE, FALSE-
methodcharacteraverageaverage, single, complete, ward, weighted, flexible, gaverage-
trace.levinteger0\([0, \infty)\)
kinteger2\([1, \infty)\)
par.methoduntyped--

References

Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustAgnes$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.agnes")
print(learner)
#> 
#> ── <LearnerClustAgnes> (clust.agnes): Agglomerative Hierarchical Clustering ────
#> • Model: -
#> • Parameters: k=2
#> • Packages: mlr3, mlr3cluster, and cluster
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and hierarchical
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)
#> Call:	 cluster::agnes(x = task$data(), diss = FALSE) 
#> Agglomerative coefficient:  0.9073773 
#> Order of objects:
#>  [1]  1 18  8 13 32 22 28  2 24 40  3 31 20  5  9 33  4 42 25  6 43 10 21 30 39
#> [26] 36 46 50 37 47  7 38 14 16 35 44 12 17 26 27 11 15 29 49 23 34 45 19 41 48
#> Height (summary):
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   2.291  12.439  16.425  24.847  28.012 152.314 
#> 
#> Available components:
#> [1] "order"  "height" "ac"     "merge"  "diss"   "call"   "method" "data"  

# Make predictions for the task
prediction = learner$predict(task)
#> Warning: Learner 'clust.agnes' doesn't predict on new data and predictions may not make sense on new data.

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#>  0.1532626