Agglomerative Hierarchical Clustering Learner
Source:R/LearnerClustAgnes.R
mlr_learners_clust.agnes.RdA LearnerClust for agglomerative hierarchical clustering implemented in cluster::agnes().
The predict method uses stats::cutree() which cuts the tree resulting from
hierarchical clustering into specified number of groups (see parameter k).
The default number for k is 2.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, cluster
Parameters
| Id | Type | Default | Levels | Range |
| metric | character | euclidean | euclidean, manhattan | - |
| stand | logical | FALSE | TRUE, FALSE | - |
| method | character | average | average, single, complete, ward, weighted, flexible, gaverage | - |
| trace.lev | integer | 0 | \([0, \infty)\) | |
| k | integer | 2 | \([1, \infty)\) | |
| par.method | untyped | - | - |
References
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes
Examples
# Define the Learner and set parameter values
learner = lrn("clust.agnes")
print(learner)
#>
#> ── <LearnerClustAgnes> (clust.agnes): Agglomerative Hierarchical Clustering ────
#> • Model: -
#> • Parameters: k=2
#> • Packages: mlr3, mlr3cluster, and cluster
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and hierarchical
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("usarrests")
# Train the learner on the task
learner$train(task)
# Print the model
print(learner$model)
#> Call: cluster::agnes(x = task$data(), diss = FALSE)
#> Agglomerative coefficient: 0.9073773
#> Order of objects:
#> [1] 1 18 8 13 32 22 28 2 24 40 3 31 20 5 9 33 4 42 25 6 43 10 21 30 39
#> [26] 36 46 50 37 47 7 38 14 16 35 44 12 17 26 27 11 15 29 49 23 34 45 19 41 48
#> Height (summary):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.291 12.439 16.425 24.847 28.012 152.314
#>
#> Available components:
#> [1] "order" "height" "ac" "merge" "diss" "call" "method" "data"
# Make predictions for the task
prediction = learner$predict(task)
#> Warning: Learner 'clust.agnes' doesn't predict on new data and predictions may not make sense on new data.
# Score the predictions
prediction$score(task = task)
#> clust.dunn
#> 0.1532626