Skip to contents

BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering. Calls stream::DSC_BIRCH() from stream.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.birch")
lrn("clust.birch")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, stream

Parameters

IdTypeDefaultRange
thresholdnumeric-\([0, \infty)\)
branchinginteger-\([1, \infty)\)
maxLeafinteger-\([1, \infty)\)
maxMeminteger0\([0, \infty)\)
outlierThresholdnumeric0.25\((-\infty, \infty)\)

References

Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: An Efficient Data Clustering Method for Very Large Databases.” ACM sigmod record, 25(2), 103–114.

Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: A new data clustering algorithm and its applications.” Data Mining and Knowledge Discovery, 1, 141–182.

Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustBIRCH$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("stream")) {
  learner = mlr3::lrn("clust.birch")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> 
#> ── <LearnerClustBIRCH> (clust.birch): BIRCH Clustering ─────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and stream
#> • Predict Types: [partition]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and hierarchical
#> • Other settings: use_weights = 'error'
#> [1] "threshold"        "branching"        "maxLeaf"          "maxMem"          
#> [5] "outlierThreshold"