A LearnerClust for X-means clustering implemented in RWeka::XMeans().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Parameters
| Id | Type | Default | Levels | Range |
| B | numeric | 1 | \([0, \infty)\) | |
| C | numeric | 0 | \([0, \infty)\) | |
| D | untyped | "weka.core.EuclideanDistance" | - | |
| H | integer | 4 | \([1, \infty)\) | |
| I | integer | 1 | \([1, \infty)\) | |
| J | integer | 1000 | \([1, \infty)\) | |
| K | untyped | "" | - | |
| L | integer | 2 | \([1, \infty)\) | |
| M | integer | 1000 | \([1, \infty)\) | |
| S | integer | 10 | \([1, \infty)\) | |
| U | integer | 0 | \([0, \infty)\) | |
| use_kdtree | logical | FALSE | TRUE, FALSE | - |
| N | untyped | - | - | |
| O | untyped | - | - | |
| Y | untyped | - | - | |
| output_debug_info | logical | FALSE | TRUE, FALSE | - |
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Pelleg, Dan, Moore, W A, others (2000). “X-means: Extending k-means with efficient estimation of the number of clusters.” In Icml, volume 1, 727–734.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans
Examples
# Define the Learner and set parameter values
learner = lrn("clust.xmeans")
print(learner)
#>
#> ── <LearnerClustXMeans> (clust.xmeans): X-means ────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and RWeka
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and partitional
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("usarrests")
# Train the learner on the task
learner$train(task)
#> Error in WPM(".check-installed-and-load", package): Required Weka package 'XMeans' is not installed.
#>
# Print the model
print(learner$model)
#> NULL
# Make predictions for the task
prediction = learner$predict(task)
#> Error: Cannot predict, Learner 'clust.xmeans' has not been trained yet
# Score the predictions
prediction$score(task = task)
#> Error: object 'prediction' not found