Skip to contents

A LearnerClust for Expectation-Maximization clustering implemented in RWeka::list_Weka_interfaces(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.em")
lrn("clust.em")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

IdTypeDefaultLevelsRange
Iinteger100\([1, \infty)\)
ll_cvnumeric1e-06\([1e-06, \infty)\)
ll_iternumeric1e-06\([1e-06, \infty)\)
Mnumeric1e-06\([1e-06, \infty)\)
maxinteger-1\([-1, \infty)\)
Ninteger-1\([-1, \infty)\)
num_slotsinteger1\([1, \infty)\)
Sinteger100\([0, \infty)\)
Xinteger10\([1, \infty)\)
Kinteger10\([1, \infty)\)
VlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Dempster, P A, Laird, M N, Rubin, B D (1977). “Maximum likelihood from incomplete data via the EM algorithm.” Journal of the royal statistical society: series B (methodological), 39(1), 1–22.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustEM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.em")
print(learner)
#> 
#> ── <LearnerClustEM> (clust.em): Expectation-Maximization Clustering ────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and RWeka
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and partitional
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)
#> 
#> EM
#> ==
#> 
#> Number of clusters selected by cross validation: 2
#> Number of iterations performed: 12
#> 
#> 
#>              Cluster
#> Attribute          0        1
#>               (0.42)   (0.58)
#> ==============================
#> Assault
#>   mean       252.4139 110.5952
#>   std. dev.   43.9813  43.1685
#> 
#> Murder
#>   mean        11.8783   4.7742
#>   std. dev.    2.8171   2.2431
#> 
#> Rape
#>   mean        28.5285  15.8558
#>   std. dev.    8.3686   5.4395
#> 
#> UrbanPop
#>   mean         68.058  63.6846
#>   std. dev.     14.02  14.2715
#> 
#> 

# Make predictions for the task
prediction = learner$predict(task)

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#>  0.1220028