BICO (Fast computation of k-means coresets in a data stream) clustering.
Calls stream::DSC_BICO() from stream.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, stream
Parameters
| Id | Type | Default | Range |
| k | integer | 5 | \([1, \infty)\) |
| space | integer | 10 | \([1, \infty)\) |
| p | integer | 10 | \([1, \infty)\) |
| iterations | integer | 10 | \([1, \infty)\) |
References
Fichtenberger, Hendrik, Gille, Marc, Schmidt, Melanie, Schwiegelshohn, Chris, Sohler, Christian (2013). “BICO: BIRCH Meets Coresets for k-Means Clustering.” In Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, 481–492. Springer.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBICO
Examples
# Define the Learner and set parameter values
learner = lrn("clust.bico")
print(learner)
#>
#> ── <LearnerClustBICO> (clust.bico): BICO Clustering ────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and stream
#> • Predict Types: [partition]
#> • Feature Types: integer and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and partitional
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("usarrests")
# Train the learner on the task
learner$train(task)
# Print the model
print(learner$model)
#> BICO - Fast computation of k-means coresets
#> Class: DSC_BICO, DSC_Micro, DSC_R, DSC
#> Number of micro-clusters: 10
#> Number of macro-clusters: 5
# Make predictions for the task
prediction = learner$predict(task)
# Score the predictions
prediction$score(task = task)
#> clust.dunn
#> 0.137278