Skip to contents

HDBSCAN (Hierarchical DBSCAN) clustering. Calls dbscan::hdbscan() from dbscan.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.hdbscan")
lrn("clust.hdbscan")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, dbscan

Parameters

IdTypeDefaultLevelsRange
minPtsinteger-\([0, \infty)\)
cluster_selection_epsilonnumeric0\((-\infty, \infty)\)
gen_hdbscan_treelogicalFALSETRUE, FALSE-
gen_simplified_treelogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-

References

Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 .

Campello, JGB R, Moulavi, Davoud, Sander, Jörg (2013). “Density-based clustering based on hierarchical density estimates.” In Pacific-Asia conference on knowledge discovery and data mining, 160–172. Springer.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHDBSCAN

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustHDBSCAN$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.hdbscan")
print(learner)
#> 
#> ── <LearnerClustHDBSCAN> (clust.hdbscan): HDBSCAN Clustering ───────────────────
#> • Model: -
#> • Parameters: minPts=5
#> • Packages: mlr3, mlr3cluster, and dbscan
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, density, and exclusive
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)
#> HDBSCAN clustering for 50 objects.
#> Parameters: minPts = 5
#> The clustering contains 3 cluster(s) and 13 noise points.
#> 
#>  0  1  2  3 
#> 13 17 11  9 
#> 
#> Available fields: cluster, minPts, coredist, cluster_scores,
#>                   membership_prob, outlier_scores, hc, data

# Make predictions for the task
prediction = learner$predict(task)

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#>  0.2423918