Skip to contents

A LearnerClust for Mean Shift clustering implemented in LPCM::ms(). There is no predict method for LPCM::ms(), so the method returns cluster labels for the 'training' data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.meanshift")
lrn("clust.meanshift")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, LPCM

Parameters

IdTypeDefaultRange
huntyped--
subsetuntyped--
scaledinteger1\([0, \infty)\)
iterinteger200\([1, \infty)\)
thrnumeric0.01\((-\infty, \infty)\)

References

Cheng, Yizong (1995). “Mean shift, mode seeking, and clustering.” IEEE transactions on pattern analysis and machine intelligence, 17(8), 790–799.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustMeanShift$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.meanshift")
print(learner)
#> 
#> ── <LearnerClustMeanShift> (clust.meanshift): Mean Shift Clustering ────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and LPCM
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and partitional
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)


# Print the model
print(learner$model)
#> 
#> Type plot( $ learner model ) to see a graphical display of the fitted object. 
#> 
#> Type names( $ learner model ) to see an overview of items available. 
#> 
#> The data have been scaled by dividing through 
#> 292 16.6 38.7 59

# Make predictions for the task
prediction = learner$predict(task)
#> Warning: Learner 'clust.meanshift' doesn't predict on new data and predictions may not make sense on new data.

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#>  0.6147292