Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner
Source:R/LearnerClustOPTICS.R
mlr_learners_clust.optics.RdOPTICS (Ordering points to identify the clustering structure) point ordering clustering.
Calls dbscan::optics() from dbscan.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, dbscan
Parameters
| Id | Type | Default | Levels | Range |
| eps | numeric | NULL | \([0, \infty)\) | |
| minPts | integer | 5 | \([0, \infty)\) | |
| search | character | kdtree | kdtree, linear, dist | - |
| bucketSize | integer | 10 | \([1, \infty)\) | |
| splitRule | character | SUGGEST | STD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST | - |
| approx | numeric | 0 | \((-\infty, \infty)\) | |
| eps_cl | numeric | - | \([0, \infty)\) |
References
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 .
Ankerst, Mihael, Breunig, M M, Kriegel, Hans-Peter, Sander, Jörg (1999). “OPTICS: Ordering points to identify the clustering structure.” ACM Sigmod record, 28(2), 49–60.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustOPTICS
Examples
# Define the Learner and set parameter values
learner = lrn("clust.optics")
print(learner)
#>
#> ── <LearnerClustOPTICS> (clust.optics): OPTICS Clustering ──────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and dbscan
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, density, and exclusive
#> • Other settings: use_weights = 'error'