Skip to contents

A LearnerClust for model-based clustering implemented in mclust::Mclust(). The predict method uses mclust::predict.Mclust() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.mclust")
lrn("clust.mclust")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, mclust

Parameters

IdTypeDefault
Guntyped1:9
modelNamesuntyped-
prioruntyped-
controluntyped-
initializationuntyped-
xuntyped-

References

Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E A (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R journal, 8(1), 289.

Fraley, Chris, Raftery, E A (2002). “Model-based clustering, discriminant analysis, and density estimation.” Journal of the American statistical Association, 97(458), 611–631.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustMclust$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.mclust")
print(learner)
#> 
#> ── <LearnerClustMclust> (clust.mclust): Gaussian Mixture Models Clustering ─────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and mclust
#> • Predict Types: [partition] and prob
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, fuzzy, and partitional
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)
#> 'Mclust' model object: (VEI,3) 
#> 
#> Available components: 
#>  [1] "call"           "data"           "modelName"      "n"             
#>  [5] "d"              "G"              "BIC"            "loglik"        
#>  [9] "df"             "bic"            "icl"            "hypvol"        
#> [13] "parameters"     "z"              "classification" "uncertainty"   

# Make predictions for the task
prediction = learner$predict(task)

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#> 0.06115606