Mini Batch K-Means Clustering Learner
Source:R/LearnerClustMiniBatchKMeans.R
mlr_learners_clust.MBatchKMeans.Rd
A LearnerClust for mini batch k-means clustering implemented in ClusterR::MiniBatchKmeans()
.
ClusterR::MiniBatchKmeans()
doesn't have a default value for the number of clusters.
Therefore, the clusters
parameter here is set to 2 by default.
The predict method uses ClusterR::predict_MBatchKMeans()
to compute the
cluster memberships for new data.
The learner supports both partitional and fuzzy clustering.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, ClusterR
Parameters
Id | Type | Default | Levels | Range |
clusters | integer | 2 | \([1, \infty)\) | |
batch_size | integer | 10 | \([1, \infty)\) | |
num_init | integer | 1 | \([1, \infty)\) | |
max_iters | integer | 100 | \([1, \infty)\) | |
init_fraction | numeric | 1 | \([0, 1]\) | |
initializer | character | kmeans++ | optimal_init, quantile_init, kmeans++, random | - |
early_stop_iter | integer | 10 | \([1, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
CENTROIDS | untyped | NULL | - | |
tol | numeric | 1e-04 | \([0, \infty)\) | |
tol_optimal_init | numeric | 0.3 | \([0, \infty)\) | |
seed | integer | 1 | \((-\infty, \infty)\) |
References
Sculley, David (2010). “Web-scale k-means clustering.” In Proceedings of the 19th international conference on World wide web, 1177–1178.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustMiniBatchKMeans
Examples
if (requireNamespace("ClusterR")) {
learner = mlr3::lrn("clust.MBatchKMeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustMiniBatchKMeans:clust.MBatchKMeans>: Mini Batch K-Means
#> * Model: -
#> * Parameters: clusters=2
#> * Packages: mlr3, mlr3cluster, ClusterR
#> * Predict Types: [partition], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, fuzzy, partitional
#> [1] "clusters" "batch_size" "num_init" "max_iters"
#> [5] "init_fraction" "initializer" "early_stop_iter" "verbose"
#> [9] "CENTROIDS" "tol" "tol_optimal_init" "seed"