Skip to contents

A simple LearnerClust which randomly (but evenly) assigns observations to num_clusters partitions (default: 1 partition).

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.featureless")
lrn("clust.featureless")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster

Parameters

IdTypeDefaultRange
num_clustersinteger-\([1, \infty)\)

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustFeatureless$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("mlr3")) {
  learner = mlr3::lrn("clust.featureless")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustFeatureless:clust.featureless>: Featureless Clustering
#> * Model: -
#> * Parameters: num_clusters=1
#> * Packages: mlr3, mlr3cluster
#> * Predict Types:  [partition], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, missings, partitional
#> [1] "num_clusters"