Skip to contents

DBSCAN (Density-based spatial clustering of applications with noise) clustering. Calls dbscan::dbscan() from dbscan.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.dbscan")
lrn("clust.dbscan")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, dbscan

Parameters

IdTypeDefaultLevelsRange
epsnumeric-\([0, \infty)\)
minPtsinteger5\([0, \infty)\)
borderPointslogicalTRUETRUE, FALSE-
weightsuntyped--
searchcharacterkdtreekdtree, linear, dist-
bucketSizeinteger10\([1, \infty)\)
splitRulecharacterSUGGESTSTD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST-
approxnumeric0\((-\infty, \infty)\)

References

Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 .

Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” In kdd, volume 96 number 34, 226–231.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustDBSCAN$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("dbscan")) {
  learner = mlr3::lrn("clust.dbscan")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustDBSCAN:clust.dbscan>: Density-Based Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, dbscan
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, density, exclusive
#> [1] "eps"          "minPts"       "borderPoints" "weights"      "search"      
#> [6] "bucketSize"   "splitRule"    "approx"