Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner
Source:R/LearnerClustDBSCAN.R
mlr_learners_clust.dbscan.Rd
DBSCAN (Density-based spatial clustering of applications with noise) clustering.
Calls dbscan::dbscan()
from dbscan.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, dbscan
Parameters
Id | Type | Default | Levels | Range |
eps | numeric | - | \([0, \infty)\) | |
minPts | integer | 5 | \([0, \infty)\) | |
borderPoints | logical | TRUE | TRUE, FALSE | - |
weights | untyped | - | - | |
search | character | kdtree | kdtree, linear, dist | - |
bucketSize | integer | 10 | \([1, \infty)\) | |
splitRule | character | SUGGEST | STD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST | - |
approx | numeric | 0 | \((-\infty, \infty)\) |
References
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 .
Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” In kdd, volume 96 number 34, 226–231.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustDBSCAN
Examples
if (requireNamespace("dbscan")) {
learner = mlr3::lrn("clust.dbscan")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustDBSCAN:clust.dbscan>: Density-Based Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, dbscan
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, density, exclusive
#> [1] "eps" "minPts" "borderPoints" "weights" "search"
#> [6] "bucketSize" "splitRule" "approx"