Skip to contents

BICO (Fast computation of k-means coresets in a data stream) clustering. Calls stream::DSC_BICO() from stream.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.bico")
lrn("clust.bico")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, stream

Parameters

IdTypeDefaultRange
kinteger5\([1, \infty)\)
spaceinteger10\([1, \infty)\)
pinteger10\([1, \infty)\)
iterationsinteger10\([1, \infty)\)

References

Fichtenberger, Hendrik, Gille, Marc, Schmidt, Melanie, Schwiegelshohn, Chris, Sohler, Christian (2013). “BICO: BIRCH Meets Coresets for k-Means Clustering.” In Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, 481–492. Springer.

Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBICO

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustBICO$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("stream")) {
  learner = mlr3::lrn("clust.bico")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustBICO:clust.bico>: BICO Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, stream
#> * Predict Types:  [partition]
#> * Feature Types: integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "k"          "space"      "p"          "iterations"