A LearnerClust for fuzzy clustering implemented in cluster::fanny().
cluster::fanny() doesn't have a deafult value for the number of clusters.
Therefore, the k parameter which correponds to the number
of clusters here is set to 2 by default.
The predict method copies cluster assignments and memberships
generated for train data. The predict does not work for
new data.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("clust.fanny") lrn("clust.fanny")
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny
new()Creates a new instance of this R6 class.
LearnerClustFanny$new()
clone()The objects of this class are cloneable with this method.
LearnerClustFanny$clone(deep = FALSE)
deepWhether to make a deep clone.
#> <LearnerClustFanny:clust.fanny> #> * Model: - #> * Parameters: k=2 #> * Packages: cluster #> * Predict Type: partition #> * Feature types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional# available parameters: learner$param_set$ids()#> [1] "k" "memb.exp" "metric" "stand" "maxit" "tol" #> [7] "trace.lev"