Partitioning Around Medoids Clustering Learner
Source:R/LearnerClustPAM.R
mlr_learners_clust.pam.Rd
A LearnerClust for PAM clustering implemented in cluster::pam()
.
cluster::pam()
doesn't have a default value for the number of clusters.
Therefore, the k
parameter which corresponds to the number
of clusters here is set to 2 by default.
The predict method uses clue::cl_predict()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("clust.pam")
mlr_learnerslrn("clust.pam")
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, cluster
Parameters
Id | Type | Default | Levels | Range |
k | integer | 2 | \([1, \infty)\) | |
metric | character | - | euclidian, manhattan | - |
medoids | untyped | - | ||
stand | logical | FALSE | TRUE, FALSE | - |
do.swap | logical | TRUE | TRUE, FALSE | - |
pamonce | integer | 0 | \([0, 5]\) | |
trace.lev | integer | 0 | \([0, \infty)\) |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustPAM
Examples
if (requireNamespace("cluster")) {
learner = mlr3::lrn("clust.pam")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustPAM:clust.pam>: Partitioning Around Medoids
#> * Model: -
#> * Parameters: k=2
#> * Packages: mlr3, mlr3cluster, cluster
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "k" "metric" "medoids" "stand" "do.swap" "pamonce"
#> [7] "trace.lev"