Skip to contents

A LearnerClust for PAM clustering implemented in cluster::pam(). cluster::pam() doesn't have a default value for the number of clusters. Therefore, the k parameter which corresponds to the number of clusters here is set to 2 by default. The predict method uses clue::cl_predict() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.pam")
lrn("clust.pam")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, cluster

Parameters

IdTypeDefaultLevelsRange
kinteger-\([1, \infty)\)
metriccharacter-euclidian, manhattan-
medoidsuntypedNULL-
standlogicalFALSETRUE, FALSE-
do.swaplogicalTRUETRUE, FALSE-
pamonceinteger0\([0, 5]\)
trace.levinteger0\([0, \infty)\)

References

Reynolds, P A, Richards, Graeme, de la Iglesia, Beatriz, Rayward-Smith, J V (2006). “Clustering rules: a comparison of partitioning and hierarchical clustering algorithms.” Journal of Mathematical Modelling and Algorithms, 5, 475–504.

Schubert, Erich, Rousseeuw, J P (2019). “Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms.” In Similarity Search and Applications: 12th International Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, 171–187. Springer.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustPAM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("cluster")) {
  learner = mlr3::lrn("clust.pam")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustPAM:clust.pam>: Partitioning Around Medoids
#> * Model: -
#> * Parameters: k=2
#> * Packages: mlr3, mlr3cluster, cluster
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "k"         "metric"    "medoids"   "stand"     "do.swap"   "pamonce"  
#> [7] "trace.lev"