A LearnerClust for divisive hierarchical clustering implemented in cluster::diana().
The predict method uses stats::cutree() which cuts the tree resulting from
hierarchical clustering into specified number of groups (see parameter k).
The default value for k is 2.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("clust.diana") lrn("clust.diana")
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana
new()Creates a new instance of this R6 class.
LearnerClustDiana$new()
clone()The objects of this class are cloneable with this method.
LearnerClustDiana$clone(deep = FALSE)
deepWhether to make a deep clone.
#> <LearnerClustDiana:clust.diana> #> * Model: - #> * Parameters: k=2 #> * Packages: cluster #> * Predict Type: partition #> * Feature types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical# available parameters: learner$param_set$ids()#> [1] "metric" "stand" "trace.lev" "k"