A LearnerClust for Expectation-Maximization clustering implemented in
RWeka::list_Weka_interfaces()
.
The predict method uses RWeka::predict.Weka_clusterer()
to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Parameters
Id | Type | Default | Levels | Range |
I | integer | 100 | \([1, \infty)\) | |
ll_cv | numeric | 1e-06 | \([1e-06, \infty)\) | |
ll_iter | numeric | 1e-06 | \([1e-06, \infty)\) | |
M | numeric | 1e-06 | \([1e-06, \infty)\) | |
max | integer | -1 | \([-1, \infty)\) | |
N | integer | -1 | \([-1, \infty)\) | |
num_slots | integer | 1 | \([1, \infty)\) | |
S | integer | 100 | \([0, \infty)\) | |
X | integer | 10 | \([1, \infty)\) | |
K | integer | 10 | \([1, \infty)\) | |
V | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Dempster, P A, Laird, M N, Rubin, B D (1977). “Maximum likelihood from incomplete data via the EM algorithm.” Journal of the royal statistical society: series B (methodological), 39(1), 1–22.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustEM
Examples
if (requireNamespace("RWeka")) {
learner = mlr3::lrn("clust.em")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustEM:clust.em>: Expectation-Maximization Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, RWeka
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "I" "ll_cv" "ll_iter"
#> [4] "M" "max" "N"
#> [7] "num_slots" "S" "X"
#> [10] "K" "V" "output_debug_info"