Skip to contents

A LearnerClust for Cobweb clustering implemented in RWeka::Cobweb(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.cobweb")
lrn("clust.cobweb")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

IdTypeDefaultRange
Anumeric1\([0, \infty)\)
Cnumeric0.002\([0, \infty)\)
Sinteger42\([1, \infty)\)

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139–172.

Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models of incremental concept formation.” Artificial intelligence, 40(1-3), 11–61.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustCobweb$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("clust.cobweb")
print(learner)
#> 
#> ── <LearnerClustCobweb> (clust.cobweb): Cobweb Clustering ──────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3cluster, and RWeka
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and partitional
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)
#> Number of merges: 14
#> Number of splits: 10
#> Number of clusters: 65
#> 
#> node 0 [50]
#> |   node 1 [8]
#> |   |   leaf 2 [1]
#> |   node 1 [8]
#> |   |   leaf 3 [1]
#> |   node 1 [8]
#> |   |   leaf 4 [1]
#> |   node 1 [8]
#> |   |   leaf 5 [1]
#> |   node 1 [8]
#> |   |   leaf 6 [1]
#> |   node 1 [8]
#> |   |   node 7 [2]
#> |   |   |   leaf 8 [1]
#> |   |   node 7 [2]
#> |   |   |   leaf 9 [1]
#> |   node 1 [8]
#> |   |   leaf 10 [1]
#> node 0 [50]
#> |   node 11 [25]
#> |   |   leaf 12 [1]
#> |   node 11 [25]
#> |   |   leaf 13 [1]
#> |   node 11 [25]
#> |   |   leaf 14 [1]
#> |   node 11 [25]
#> |   |   node 15 [2]
#> |   |   |   leaf 16 [1]
#> |   |   node 15 [2]
#> |   |   |   leaf 17 [1]
#> |   node 11 [25]
#> |   |   leaf 18 [1]
#> |   node 11 [25]
#> |   |   leaf 19 [1]
#> |   node 11 [25]
#> |   |   leaf 20 [1]
#> |   node 11 [25]
#> |   |   leaf 21 [1]
#> |   node 11 [25]
#> |   |   leaf 22 [1]
#> |   node 11 [25]
#> |   |   leaf 23 [1]
#> |   node 11 [25]
#> |   |   node 24 [2]
#> |   |   |   leaf 25 [1]
#> |   |   node 24 [2]
#> |   |   |   leaf 26 [1]
#> |   node 11 [25]
#> |   |   node 27 [2]
#> |   |   |   leaf 28 [1]
#> |   |   node 27 [2]
#> |   |   |   leaf 29 [1]
#> |   node 11 [25]
#> |   |   node 30 [2]
#> |   |   |   leaf 31 [1]
#> |   |   node 30 [2]
#> |   |   |   leaf 32 [1]
#> |   node 11 [25]
#> |   |   node 33 [2]
#> |   |   |   leaf 34 [1]
#> |   |   node 33 [2]
#> |   |   |   leaf 35 [1]
#> |   node 11 [25]
#> |   |   leaf 36 [1]
#> |   node 11 [25]
#> |   |   node 37 [3]
#> |   |   |   leaf 38 [1]
#> |   |   node 37 [3]
#> |   |   |   leaf 39 [1]
#> |   |   node 37 [3]
#> |   |   |   leaf 40 [1]
#> |   node 11 [25]
#> |   |   leaf 41 [1]
#> |   node 11 [25]
#> |   |   leaf 42 [1]
#> node 0 [50]
#> |   node 43 [17]
#> |   |   leaf 44 [1]
#> |   node 43 [17]
#> |   |   leaf 45 [1]
#> |   node 43 [17]
#> |   |   leaf 46 [1]
#> |   node 43 [17]
#> |   |   leaf 47 [1]
#> |   node 43 [17]
#> |   |   node 48 [2]
#> |   |   |   leaf 49 [1]
#> |   |   node 48 [2]
#> |   |   |   leaf 50 [1]
#> |   node 43 [17]
#> |   |   leaf 51 [1]
#> |   node 43 [17]
#> |   |   node 52 [5]
#> |   |   |   leaf 53 [1]
#> |   |   node 52 [5]
#> |   |   |   leaf 54 [1]
#> |   |   node 52 [5]
#> |   |   |   leaf 55 [1]
#> |   |   node 52 [5]
#> |   |   |   leaf 56 [1]
#> |   |   node 52 [5]
#> |   |   |   leaf 57 [1]
#> |   node 43 [17]
#> |   |   node 58 [5]
#> |   |   |   leaf 59 [1]
#> |   |   node 58 [5]
#> |   |   |   node 60 [3]
#> |   |   |   |   leaf 61 [1]
#> |   |   |   node 60 [3]
#> |   |   |   |   leaf 62 [1]
#> |   |   |   node 60 [3]
#> |   |   |   |   leaf 63 [1]
#> |   |   node 58 [5]
#> |   |   |   leaf 64 [1]
#> 
#> 

# Make predictions for the task
prediction = learner$predict(task)

# Score the predictions
prediction$score(task = task)
#> clust.dunn 
#>          0