A LearnerClust for Cobweb clustering implemented in RWeka::Cobweb()
.
The predict method uses RWeka::predict.Weka_clusterer()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Parameters
Id | Type | Default | Range |
A | numeric | 1 | \([0, \infty)\) |
C | numeric | 0.002 | \([0, \infty)\) |
S | integer | 42 | \([1, \infty)\) |
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76--77.
Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139--172.
Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models of incremental concept formation.” Artificial intelligence, 40(1-3), 11--61.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustCobweb
Examples
if (requireNamespace("RWeka")) {
learner = mlr3::lrn("clust.cobweb")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustCobweb:clust.cobweb>: Cobweb Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, RWeka
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "A" "C" "S"