Skip to contents

A LearnerClust for X-means clustering implemented in RWeka::XMeans(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.xmeans")
lrn("clust.xmeans")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

IdTypeDefaultLevelsRange
Bnumeric1\([0, \infty)\)
Cnumeric0\([0, \infty)\)
Duntyped"weka.core.EuclideanDistance"-
Hinteger4\([1, \infty)\)
Iinteger1\([1, \infty)\)
Jinteger1000\([1, \infty)\)
Kuntyped""-
Linteger2\([1, \infty)\)
Minteger1000\([1, \infty)\)
Sinteger10\([1, \infty)\)
Uinteger0\([0, \infty)\)
use_kdtreelogicalFALSETRUE, FALSE-
Nuntyped--
Ountyped--
Yuntyped--
output_debug_infologicalFALSETRUE, FALSE-

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Pelleg, Dan, Moore, W A, others (2000). “X-means: Extending k-means with efficient estimation of the number of clusters.” In Icml, volume 1, 727–734.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustXMeans$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.xmeans")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustXMeans:clust.xmeans>: X-means
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, RWeka
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#>  [1] "B"                 "C"                 "D"                
#>  [4] "H"                 "I"                 "J"                
#>  [7] "K"                 "L"                 "M"                
#> [10] "S"                 "U"                 "use_kdtree"       
#> [13] "N"                 "O"                 "Y"                
#> [16] "output_debug_info"