A LearnerClust for X-means clustering implemented in RWeka::XMeans()
.
The predict method uses RWeka::predict.Weka_clusterer()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("clust.xmeans")
mlr_learnerslrn("clust.xmeans")
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Parameters
Id | Type | Default | Levels | Range |
B | numeric | 1 | \([0, \infty)\) | |
C | numeric | 0 | \([0, \infty)\) | |
D | untyped | weka.core.EuclideanDistance | - | |
H | integer | 4 | \([1, \infty)\) | |
I | integer | 1 | \([1, \infty)\) | |
J | integer | 1000 | \([1, \infty)\) | |
K | untyped | - | ||
L | integer | 2 | \([1, \infty)\) | |
M | integer | 1000 | \([1, \infty)\) | |
S | integer | 10 | \([1, \infty)\) | |
U | integer | 0 | \([0, \infty)\) | |
use_kdtree | logical | FALSE | TRUE, FALSE | - |
N | untyped | - | - | |
O | untyped | - | - | |
Y | untyped | - | - | |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustXMeans
Examples
if (requireNamespace("RWeka")) {
learner = mlr3::lrn("clust.xmeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustXMeans:clust.xmeans>: X-means
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, RWeka
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "B" "C" "D"
#> [4] "H" "I" "J"
#> [7] "K" "L" "M"
#> [10] "S" "U" "use_kdtree"
#> [13] "N" "O" "Y"
#> [16] "output_debug_info"