A LearnerClust for k-means clustering implemented in stats::kmeans()
.
stats::kmeans()
doesn't have a default value for the number of clusters.
Therefore, the centers
parameter here is set to 2 by default.
The predict method uses clue::cl_predict()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("clust.kmeans")
mlr_learnerslrn("clust.kmeans")
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, 'stats', clue
Parameters
Id | Type | Default | Levels | Range |
centers | untyped | 2 | - | |
iter.max | integer | 10 | \([1, \infty)\) | |
algorithm | character | Hartigan-Wong | Hartigan-Wong, Lloyd, Forgy, MacQueen | - |
nstart | integer | 1 | \([1, \infty)\) | |
trace | integer | 0 | \([0, \infty)\) |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustKMeans
Examples
if (requireNamespace("stats") && requireNamespace("clue")) {
learner = mlr3::lrn("clust.kmeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustKMeans:clust.kmeans>: K-Means
#> * Model: -
#> * Parameters: centers=2
#> * Packages: mlr3, mlr3cluster, stats, clue
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "centers" "iter.max" "algorithm" "nstart" "trace"