Skip to contents

A LearnerClust for k-means clustering implemented in stats::kmeans(). stats::kmeans() doesn't have a default value for the number of clusters. Therefore, the centers parameter here is set to 2 by default. The predict method uses clue::cl_predict() to compute the cluster memberships for new data.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("clust.kmeans")
lrn("clust.kmeans")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, 'stats', clue

Parameters

IdTypeDefaultLevelsRange
centersuntyped2-
iter.maxinteger10\([1, \infty)\)
algorithmcharacterHartigan-WongHartigan-Wong, Lloyd, Forgy, MacQueen-
nstartinteger1\([1, \infty)\)
traceinteger0\([0, \infty)\)

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustKMeans$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("stats") && requireNamespace("clue")) {
  learner = mlr3::lrn("clust.kmeans")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustKMeans:clust.kmeans>: K-Means
#> * Model: -
#> * Parameters: centers=2
#> * Packages: mlr3, mlr3cluster, stats, clue
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "centers"   "iter.max"  "algorithm" "nstart"    "trace"