A LearnerClust for fuzzy clustering implemented in e1071::cmeans()
.
e1071::cmeans()
doesn't have a default value for the number of clusters.
Therefore, the centers
parameter here is set to 2 by default.
The predict method uses clue::cl_predict()
to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, e1071
Parameters
Id | Type | Default | Levels | Range |
centers | untyped | - | - | |
iter.max | integer | 100 | \([1, \infty)\) | |
verbose | logical | FALSE | TRUE, FALSE | - |
dist | character | euclidean | euclidean, manhattan | - |
method | character | cmeans | cmeans, ufcl | - |
m | numeric | 2 | \([1, \infty)\) | |
rate.par | numeric | - | \([0, 1]\) | |
weights | untyped | 1L | - | |
control | untyped | - | - |
References
Dimitriadou, Evgenia, Hornik, Kurt, Leisch, Friedrich, Meyer, David, Weingessel, Andreas (2008). “Misc functions of the Department of Statistics (e1071), TU Wien.” R package, 1, 5–24.
Bezdek, C J (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustCMeans
Examples
if (requireNamespace("e1071")) {
learner = mlr3::lrn("clust.cmeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustCMeans:clust.cmeans>: Fuzzy C-Means Clustering Learner
#> * Model: -
#> * Parameters: centers=2
#> * Packages: mlr3, mlr3cluster, e1071
#> * Predict Types: [partition], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, fuzzy, partitional
#> [1] "centers" "iter.max" "verbose" "dist" "method" "m" "rate.par"
#> [8] "weights" "control"