K-Means Clustering Learner from Weka
Source:R/LearnerClustSimpleKMeans.R
mlr_learners_clust.SimpleKMeans.Rd
A LearnerClust for Simple K Means clustering implemented in RWeka::SimpleKMeans()
.
The predict method uses RWeka::predict.Weka_clusterer()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("clust.SimpleKMeans")
mlr_learnerslrn("clust.SimpleKMeans")
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, RWeka
Parameters
Id | Type | Default | Levels | Range |
A | untyped | weka.core.EuclideanDistance | - | |
C | logical | FALSE | TRUE, FALSE | - |
fast | logical | FALSE | TRUE, FALSE | - |
I | integer | 100 | \([1, \infty)\) | |
init | integer | 0 | \([0, 3]\) | |
M | logical | FALSE | TRUE, FALSE | - |
max_candidates | integer | 100 | \([1, \infty)\) | |
min_density | integer | 2 | \([1, \infty)\) | |
N | integer | 2 | \([1, \infty)\) | |
num_slots | integer | 1 | \([1, \infty)\) | |
O | logical | FALSE | TRUE, FALSE | - |
periodic_pruning | integer | 10000 | \([1, \infty)\) | |
S | integer | 10 | \([0, \infty)\) | |
t2 | numeric | -1 | \((-\infty, \infty)\) | |
t1 | numeric | -1.5 | \((-\infty, \infty)\) | |
V | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustSimpleKMeans
Examples
if (FALSE) {
if (requireNamespace("RWeka")) {
learner = mlr3::lrn("clust.SimpleKMeans")
print(learner)
# available parameters:
learner$param_set$ids()
}}