Skip to contents

A LearnerClust for model-based clustering implemented in mclust::Mclust(). The predict method uses mclust::predict.Mclust() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.mclust")
lrn("clust.mclust")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, mclust

Parameters

IdTypeDefault
Guntyped1:9
modelNamesuntyped-
prioruntyped-
controluntypedmclust::emControl()
initializationuntyped-
xuntyped-

References

Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E A (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R journal, 8(1), 289.

Fraley, Chris, Raftery, E A (2002). “Model-based clustering, discriminant analysis, and density estimation.” Journal of the American statistical Association, 97(458), 611–631.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustMclust$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("mclust")) {
  learner = mlr3::lrn("clust.mclust")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustMclust:clust.mclust>: Gaussian Mixture Models Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, mclust
#> * Predict Types:  [partition], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, fuzzy, partitional
#> [1] "G"              "modelNames"     "prior"          "control"       
#> [5] "initialization" "x"