Affinity Propagation Clustering Learner
Source:R/LearnerClustAffinityPropagation.R
mlr_learners_clust.ap.Rd
A LearnerClust for Affinity Propagation clustering implemented in apcluster::apcluster()
.
apcluster::apcluster()
doesn't have set a default for similarity function.
Therefore, the s
parameter here is set to apcluster::negDistMat(r = 2L)
by default
since this is what is used in the original paper on Affity Propagation clustering.
The predict method computes the closest cluster exemplar to find the
cluster memberships for new data.
The code is taken from
StackOverflow
answer by the apcluster
package maintainer.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("clust.ap")
mlr_learnerslrn("clust.ap")
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, apcluster
Parameters
Id | Type | Default | Levels | Range |
s | untyped | apcluster::negDistMat, 2 | - | |
p | untyped | NA | - | |
q | numeric | - | \([0, 1]\) | |
maxits | integer | 1000 | \([1, \infty)\) | |
convits | integer | 100 | \([1, \infty)\) | |
lam | numeric | 0.9 | \([0.5, 1]\) | |
includeSim | logical | FALSE | TRUE, FALSE | - |
details | logical | FALSE | TRUE, FALSE | - |
nonoise | logical | FALSE | TRUE, FALSE | - |
seed | integer | - | \((-\infty, \infty)\) |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustAP
Examples
if (requireNamespace("apcluster")) {
learner = mlr3::lrn("clust.ap")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustAP:clust.ap>: Affinity Propagation Clustering
#> * Model: -
#> * Parameters: s=<function>
#> * Packages: mlr3, mlr3cluster, apcluster
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "s" "p" "q" "maxits" "convits"
#> [6] "lam" "includeSim" "details" "nonoise" "seed"