Affinity Propagation Clustering Learner
Source:R/LearnerClustAffinityPropagation.R
mlr_learners_clust.ap.Rd
A LearnerClust for Affinity Propagation clustering implemented in apcluster::apcluster()
.
apcluster::apcluster()
doesn't have set a default for similarity function.
The predict method computes the closest cluster exemplar to find the
cluster memberships for new data.
The code is taken from
StackOverflow
answer by the apcluster
package maintainer.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, apcluster
Parameters
Id | Type | Default | Levels | Range |
s | untyped | - | - | |
p | untyped | NA | - | |
q | numeric | - | \([0, 1]\) | |
maxits | integer | 1000 | \([1, \infty)\) | |
convits | integer | 100 | \([1, \infty)\) | |
lam | numeric | 0.9 | \([0.5, 1]\) | |
includeSim | logical | FALSE | TRUE, FALSE | - |
details | logical | FALSE | TRUE, FALSE | - |
nonoise | logical | FALSE | TRUE, FALSE | - |
seed | integer | - | \((-\infty, \infty)\) |
References
Bodenhofer, Ulrich, Kothmeier, Andreas, Hochreiter, Sepp (2011). “APCluster: an R package for affinity propagation clustering.” Bioinformatics, 27(17), 2463–2464.
Frey, J B, Dueck, Delbert (2007). “Clustering by passing messages between data points.” science, 315(5814), 972–976.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustAP
Examples
if (requireNamespace("apcluster")) {
learner = mlr3::lrn("clust.ap")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustAP:clust.ap>: Affinity Propagation Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, apcluster
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "s" "p" "q" "maxits" "convits"
#> [6] "lam" "includeSim" "details" "nonoise" "seed"