BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering.
Calls stream::DSC_BIRCH() from stream.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, stream
Parameters
| Id | Type | Default | Range |
| threshold | numeric | - | \([0, \infty)\) |
| branching | integer | - | \([1, \infty)\) |
| maxLeaf | integer | - | \([1, \infty)\) |
| maxMem | integer | 0 | \([0, \infty)\) |
| outlierThreshold | numeric | 0.25 | \((-\infty, \infty)\) |
References
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: An Efficient Data Clustering Method for Very Large Databases.” ACM sigmod record, 25(2), 103–114.
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: A new data clustering algorithm and its applications.” Data Mining and Knowledge Discovery, 1, 141–182.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH
Examples
if (requireNamespace("stream")) {
learner = mlr3::lrn("clust.birch")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustBIRCH:clust.birch>: BIRCH Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, stream
#> * Predict Types: [partition]
#> * Feature Types: integer, numeric
#> * Properties: complete, exclusive, hierarchical
#> [1] "threshold" "branching" "maxLeaf" "maxMem"
#> [5] "outlierThreshold"