Skip to contents

A LearnerClust for Simple K Means clustering implemented in RWeka::SimpleKMeans(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.SimpleKMeans")
lrn("clust.SimpleKMeans")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

IdTypeDefaultLevelsRange
Auntyped"weka.core.EuclideanDistance"-
ClogicalFALSETRUE, FALSE-
fastlogicalFALSETRUE, FALSE-
Iinteger100\([1, \infty)\)
initinteger0\([0, 3]\)
MlogicalFALSETRUE, FALSE-
max_candidatesinteger100\([1, \infty)\)
min_densityinteger2\([1, \infty)\)
Ninteger2\([1, \infty)\)
num_slotsinteger1\([1, \infty)\)
OlogicalFALSETRUE, FALSE-
periodic_pruninginteger10000\([1, \infty)\)
Sinteger10\([0, \infty)\)
t2numeric-1\((-\infty, \infty)\)
t1numeric-1.5\((-\infty, \infty)\)
VlogicalFALSETRUE, FALSE-
output_debug_infologicalFALSETRUE, FALSE-

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Forgy, W E (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.

Lloyd, P S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information Theory, 28(2), 129–137.

MacQueen, James (1967). “Some methods for classification and analysis of multivariate observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281–297.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustSimpleKMeans$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.SimpleKMeans")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustSimpleKMeans:clust.SimpleKMeans>: K-Means (Weka)
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, RWeka
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#>  [1] "A"                 "C"                 "fast"             
#>  [4] "I"                 "init"              "M"                
#>  [7] "max_candidates"    "min_density"       "N"                
#> [10] "num_slots"         "O"                 "periodic_pruning" 
#> [13] "S"                 "t2"                "t1"               
#> [16] "V"                 "output_debug_info"