Skip to contents

HDBSCAN (Hierarchical DBSCAN) clustering. Calls dbscan::hdbscan() from dbscan.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.hdbscan")
lrn("clust.hdbscan")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, dbscan

Parameters

IdTypeDefaultLevelsRange
minPtsinteger-\([0, \infty)\)
gen_hdbscan_treelogicalFALSETRUE, FALSE-
gen_simplified_treelogicalFALSETRUE, FALSE-
verboselogicalFALSETRUE, FALSE-

References

Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 .

Campello, JGB R, Moulavi, Davoud, Sander, Jörg (2013). “Density-based clustering based on hierarchical density estimates.” In Pacific-Asia conference on knowledge discovery and data mining, 160–172. Springer.

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHDBSCAN

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClustHDBSCAN$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("dbscan")) {
  learner = mlr3::lrn("clust.hdbscan")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}
#> <LearnerClustHDBSCAN:clust.hdbscan>: HDBSCAN Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, dbscan
#> * Predict Types:  [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, density, exclusive
#> [1] "minPts"              "gen_hdbscan_tree"    "gen_simplified_tree"
#> [4] "verbose"