A LearnerClust for kernel k-means clustering implemented in kernlab::kkmeans()
.
kernlab::kkmeans()
doesn't have a default value for the number of clusters.
Therefore, the centers
parameter here is set to 2 by default.
Kernel parameters have to be passed directly and not by using the kpar
list in kkmeans
.
The predict method finds the nearest center in kernel distance to
assign clusters for new data points.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, kernlab
Parameters
Id | Type | Default | Levels | Range |
centers | untyped | - | - | |
kernel | character | rbfdot | vanilladot, polydot, rbfdot, tanhdot, laplacedot, besseldot, anovadot, splinedot | - |
sigma | numeric | - | \([0, \infty)\) | |
degree | integer | 3 | \([1, \infty)\) | |
scale | numeric | 1 | \([0, \infty)\) | |
offset | numeric | 1 | \((-\infty, \infty)\) | |
order | integer | 1 | \((-\infty, \infty)\) | |
alg | character | kkmeans | kkmeans, kerninghan | - |
p | numeric | 1 | \((-\infty, \infty)\) |
References
Karatzoglou, Alexandros, Smola, Alexandros, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11, 1–20.
Dhillon, S I, Guan, Yuqiang, Kulis, Brian (2004). A unified view of kernel k-means, spectral clustering and graph cuts. Citeseer.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustKKMeans
Examples
if (requireNamespace("kernlab")) {
learner = mlr3::lrn("clust.kkmeans")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustKKMeans:clust.kkmeans>: Kernel K-Means
#> * Model: -
#> * Parameters: centers=2
#> * Packages: mlr3, mlr3cluster, kernlab
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "centers" "kernel" "sigma" "degree" "scale" "offset" "order"
#> [8] "alg" "p"