A LearnerClust for Mean Shift clustering implemented in LPCM::ms()
.
There is no predict method for LPCM::ms()
, so the method
returns cluster labels for the 'training' data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, LPCM
Parameters
Id | Type | Default | Range |
h | untyped | - | - |
subset | untyped | - | - |
scaled | integer | 1 | \([0, \infty)\) |
iter | integer | 200 | \([1, \infty)\) |
thr | numeric | 0.01 | \((-\infty, \infty)\) |
References
Cheng, Yizong (1995). “Mean shift, mode seeking, and clustering.” IEEE transactions on pattern analysis and machine intelligence, 17(8), 790–799.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.bico
,
mlr_learners_clust.birch
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.mclust
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustMeanShift
Examples
if (requireNamespace("LPCM")) {
learner = mlr3::lrn("clust.meanshift")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustMeanShift:clust.meanshift>: Mean Shift Clustering
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, LPCM
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, partitional
#> [1] "h" "subset" "scaled" "iter" "thr"