Agglomerative Hierarchical Clustering Learner
Source:R/LearnerClustAgnes.R
mlr_learners_clust.agnes.RdA LearnerClust for agglomerative hierarchical clustering implemented in cluster::agnes().
The predict method uses stats::cutree() which cuts the tree resulting from
hierarchical clustering into specified number of groups (see parameter k).
The default number for k is 2.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, cluster
Parameters
| Id | Type | Default | Levels | Range |
| metric | character | euclidean | euclidean, manhattan | - |
| stand | logical | FALSE | TRUE, FALSE | - |
| method | character | average | average, single, complete, ward, weighted, flexible, gaverage | - |
| trace.lev | integer | 0 | \([0, \infty)\) | |
| k | integer | 2 | \([1, \infty)\) | |
| par.method | untyped | - | - |
References
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes
Examples
if (requireNamespace("cluster")) {
learner = mlr3::lrn("clust.agnes")
print(learner)
# available parameters:
learner$param_set$ids()
}
#> <LearnerClustAgnes:clust.agnes>: Agglomerative Hierarchical Clustering
#> * Model: -
#> * Parameters: k=2
#> * Packages: mlr3, mlr3cluster, cluster
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
#> * Properties: complete, exclusive, hierarchical
#> [1] "metric" "stand" "method" "trace.lev" "k"
#> [6] "par.method"