Prototype Hierarchical Clustering Learner
Source:R/LearnerClustProtoclust.R
mlr_learners_clust.protoclust.RdHierarchical clustering using minimax linkage with prototypes.
Calls protoclust::protoclust() from package protoclust.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, protoclust
Parameters
| Id | Type | Default | Levels | Range |
| method | character | euclidean | euclidean, maximum, manhattan, canberra, binary, minkowski | - |
| diag | logical | FALSE | TRUE, FALSE | - |
| upper | logical | FALSE | TRUE, FALSE | - |
| p | numeric | 2 | \((-\infty, \infty)\) | |
| verb | logical | FALSE | TRUE, FALSE | - |
| k | integer | NULL | \([1, \infty)\) |
References
Bien, Jacob, Tibshirani, Robert (2011). “Hierarchical Clustering with Prototypes via Minimax Linkage.” Journal of the American Statistical Association, 106(495), 1075–1084.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustProtoclust
Examples
# Define the Learner and set parameter values
learner = lrn("clust.protoclust")
print(learner)
#>
#> ── <LearnerClustProtoclust> (clust.protoclust): Prototype Hierarchical Clusterin
#> • Model: -
#> • Parameters: k=2
#> • Packages: mlr3, mlr3cluster, and protoclust
#> • Predict Types: [partition]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: complete, exclusive, and hierarchical
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("usarrests")
# Train the learner on the task
learner$train(task)
# Print the model
print(learner$model)
#>
#> Call:
#> protoclust::protoclust(d = d)
#>
#> Cluster method : minimax
#> Distance : euclidean
#> Number of objects: 50
#>
# Make predictions for the task
prediction = learner$predict(task)
#> Warning:
#> ✖ Learner 'clust.protoclust' doesn't predict on new data and predictions may
#> not make sense on new data.
#> → Class: Mlr3WarningInput
# Score the predictions
prediction$score(task = task)
#> clust.dunn
#> 0.1532626